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Abstract-- This paper explores a mathematical method for 
detecting groups of generators in an electric power system that 
have the potential to benefit from exercising market power.  
Applications of this method include metrics for measuring or 
detecting the possibility of market power.  This paper focuses 
on the properties of revenue and dispatch to bid sensitivity 
matrices, and develops methods of identifying load pockets 
from the sensitivity matrices, and how the matrices can 
provide metrics for market power.  
 

Index Terms—Optimal power flow, electricity markets, 
market power 

I.  INTRODUCTION 
HYSICAL constraints in the electrical transmission 
network limit the sources of generation for some groups of 

load, or load pockets.  Generators inside load pockets often 
have opportunities to exercise market power by submitting 
high bids.  Groups of generators may find ways to adjust their 
outputs in order to constrain a transmission line, creating a 
load pocket from which they can profit.  This paper explores a 
mathematical method for detecting groups of generators in an 
electric power system that have the potential to benefit from 
exercising market power due to a load pocket.  Applications 
of this method include metrics for measuring or detecting the 
possibility of market power.  This method could be used by 
FERC or an ISO in market power mitigation, or by generators 
or power marketers in determining their strategies. 
 Harvey and Hogan [1], [2] discuss the need for narrowing 
the focus of market power detection, since simulation studies 
alone cannot replicate all of the real-world constraints of the 
market.  They discuss several examples where prices may be 
above the competitive levels determined by simulation studies, 
but market power is not being exercised.  Alvarado and 
Rajaraman [3] discuss conduct tests to determine whether 
generators’ strategies are compatible with those of a price 
taker. 
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Glavitsch and Alvarado [4] explore solving two optimal 
power flows (OPF) to determine price signals in order to 
relieve congestion at minimum cost.  They calculate additive 
price signals, and when these are applied in the second OPF 
ignoring all constraints, the two OPFs have the same solution 
for power generated/consumed at each node, but different 
solutions for nodal prices.  Lesieutre, Thomas and Mount [5] 
develop a method to calculate matrices of dispatch to bid and 
revenue to bid sensitivities for the generators in a power 
system.  The matrices are also calculated using two OPFs.  
The first OPF establishes an operating point using all market 
information.  For the second OPF, block offers are replaced 
by the nodal prices from the first OPF, and generator 
production limits are relaxed.  This allows for incremental 
analysis to identify generators that can increase their offer 
prices, and hence revenues, without affecting dispatch.  
Generators with this ability are likely to be located in a load 
pocket and have the potential to benefit from exercise of 
market power.   

Similar work is presented by He and Song [6], who use a 
two-level optimization problem with ac power flow equations 
to solve for Nash equilibrium including coalitions.  This 
algorithm allows generators or system operators to determine 
which coalitions are the most beneficial to the participants.  
One limitation to the work is the combinatorial explosion that 
occurs with larger systems. 

The outline of this paper is as follows: section II focuses on 
the properties of revenue and dispatch to bid sensitivity 
matrices, sections III and IV develop methods of identifying 
load pockets from the sensitivity matrices, and section V 
discusses conclusions and future work. 

II.  PROPERTIES OF REVENUE AND DISPATCH TO BID 
SENSITIVITY MATRICES 

As a method to identify load pockets and generators with 
the ability to exercise market power, Lesieutre, Thomas and 
Mount [5] compute two sensitivity matrices in their work:  
dispatch-to-offer and revenue-to-offer.  These matrices are 
calculated using two optimal power flows.  The first OPF uses 
all market information to establish an operating point.  Block 
offers are replaced with nodal prices from the first OPF, and 
generator production limits are relaxed in the second OPF.  
Through incremental analysis with the two OPFs, the 
dispatch-to-offer and revenue-to-offer sensitivity matrices are 
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calculated.  These matrices are used to identify load pockets, 
and also to identify generators that can exercise market power 
through their location in or near a load pocket.  In this paper, 
we extend this analysis. 

The dispatch-to-offer sensitivity matrix M has the following 
properties:  it is symmetric, has all negative diagonal entries, it 
has all negative real eigenvalues, and has at least one zero 
eigenvalue.  The revenue-to-offer sensitivity matrix A is 
nearly symmetric, all of its diagonal entries are negative, its 
eigenvalues are real, and the sum of each row is nonnegative.   

In obtaining the sensitivity matrices in [5], an incremental 
model was developed by linearizing about the solution to an 
optimal power flow.  This model assumes that in the region of 
the OPF solution, dispatch and revenue can be approximated 
as linear functions of generator bids.  Thus, the revenue-offer 
sensitivity matrix is only valid in the region close to the OPF 
solution.  As generators change bids, the OPF solution will 
change, as will the binding constraints.  Consequently, a load 
pocket identified through the sensitivity matrices may exist 
only under specific operating conditions. 

The two OPFs can be run with quadratic or piecewise-linear 
bids.  Future work on this topic includes extending the 
analysis to multi-part bids with startup and shutdown costs, 
and including bids for reserves and other ancillary services. 

The symmetry and near-symmetry of the matrices 
demonstrate that changes in dispatch due to changes in offers 
of two generators are reciprocal.  For example, in a two-bus, 
two-generator system, if generator A increases its offer 
relative to the other generator, its dispatch will decrease and 
the dispatch of generator B will increase.  The opposite will 
happen if generator B increases its offer.  Since the two 
generators are connected by the same transmission line, the 
changes in dispatch will be similar in magnitude for 
comparable changes in offer.   

The negative diagonal elements of the revenue – bid 
sensitivity matrix indicate that no generator by itself can 
increase its revenue by raising its bid.  According to economic 
theory, for a perfectly competitive market, this means that all 
generators are initially submitting bids at marginal cost.  
Generators that are perfect competitors are price-takers, and 
changing their bids will not impact prices.  Electricity markets 
do not exhibit perfect competition, and the pivotal 
generator(s) that set the price can have an impact on this price.  
A price taker will be either fully dispatched or not dispatched 
depending on its bid, and the price it receives will be based on 
the price set by the marginal, or pivotal, generator in its area. 

We assume that dispatch decreases linearly with increasing 
bid; this is true for an unconstrained price taking generator.  
Fig. 1 shows the relationships of dispatch, revenue, and profit 
to bid for a non-price taking generator.  The revenue and 
profit curves are based on the assumption that this is paid 
what it bids.  Generators bidding at marginal cost are 
operating at the maximum of this parabolic curve, as shown in 
Fig. 1.  These curves are the same that would be obtained 
using quadratic bid curves and without any binding 
constraints.   

Studying generator strategies in terms of revenue implies 
that the generators have zero marginal costs, such as hydro 
generators, or that marginal costs are constant for all output 

levels and independent of bid.  Rational market participants 
should optimize profit, not revenue.  Costs may or may not be 
coupled to bids, and will differ with fuel type.  The diamond 
points on the revenue and profit curves in Fig. 1 indicate the 
maxima.  The third curve shows profit when bids are equal to 
marginal costs, while the fourth curve shows profit when 
marginal costs are constant and decoupled from bids.  In this 
case, the profit and revenue maxima occur at the same point, 
at a bid of $30/MW.  When bids equal marginal costs, the 
profit maximum occurs at a slightly lower bid, in this case at 
$25/MW.  The fifth curve shows profit when marginal costs 
are declining and bid is decoupled from marginal cost.  The 
maximum profit point now depends on how much marginal 
costs decline.  Many thermal generators have declining 
marginal costs for part of their operating range, since the 
generators reach maximum efficiency at high power outputs. 

 

 
Fig. 1:  Relationships of dispatch, revenue and profit to bid for quadratic costs 
for a single generator in an unconstrained system 
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The zero eigenvalue of the dispatch-to-offer sensitivity 
matrix M is associated with an eigenvector of all ones.  This 
occurs because if all generators increase their offers in the 
same proportion, there will be no change in dispatch1.  There 
is not a zero eigenvalue in the revenue-to-offer sensitivity 
matrix A because if all generators increase their offers 
proportionately, all will increase their revenues since marginal 
prices will increase.   

The dispatch-to-offer sensitivity matrix M is always 
symmetric, for both quadratic and piecewise linear bid curves.  
Since it is symmetric, it has distinct real eigenvalues and 
orthogonal eigenvectors. 

The row sums in the revenue-to-offer sensitivity matrix are 
always nonnegative because if all generators increase their 
offers in the same proportion, the dispatch will remain the 
same and all generators will increase their revenues.  
Likewise, the sum of the row sums is nonnegative.  According 
to [5], the dispatch-to-offer matrix tends to have row sums and 
sum of the row sums close to zero.  In practice this is not 
always true.  It tends to be true for cases that have a clearly 
identifiable load pocket, such as the IEEE 30-bus test system, 
but not for other systems.   

Looking at row sums or column sums in the dispatch-offer 
sensitivity matrix are the same due to the symmetry of the 
matrix.   

The dispatch-to-offer matrix usually has all zero and 
negative eigenvalues.  The revenue-to-offer matrix has a mix 
of negative and positive eigenvalues.  The dispatch-to-offer 
matrix, M, and the revenue-to-offer matrix, A, have the 
relationship shown in (1), where z is dispatch and λ the 
locational marginal price and diag(x) is a matrix with the 
values of the vector x along its diagonal.    

A = diag(z) + M*diag(λ)              (1) 
We know the following about sums of square matrices from 

linear algebra theory [9]: 
1. trace(A+B) = trace(A) + trace(B), where trace is the sum 

of diagonal elements 
2. Σ(Λ(A+B)) = Σ (Λ (A)) + Σ (Λ (B)), where Λ represents 

the list of eigenvalues of the matrix. 
In normal operation, generators are dispatched to produce 

zero or positive amounts of power, so diag(z) will have all 
nonnegative eigenvalues.  The locational marginal prices will 
usually be nonnegative, but this is not always the case.  Thus 
Σ(Λ(A)) = Σ(Λ(z)) + Σ(Λ(M*diag(λ))).  This is why the 
revenue-to-offer sensitivity matrix often has more positive 
eigenvalues than the dispatch matrix. 

Off-diagonal elements can take any value.  They represent 
the sensitivity of one generator’s revenues to the change in bid 
of another generator.  Off-diagonal elements in a row 
represent the sensitivity of a particular generator’s revenue to 
changes in bid from the other generators.  Off-diagonal 
elements in a column indicate the sensitivity of each generator 
to a change in bid of one generator.  In theory, many of the 
off-diagonal sensitivities should be zero for an infinitesimal 
step.  However, due to the finite step size used in incremental 
analysis and system constraints, these values are nonzero.   

                                                           
1 This is, of course, only true if there is no demand-side response to prices. 

III.  MATRIX SUMS AS A METRIC FOR MARKET POWER 
Given the matrix of revenue to bid sensitivities discussed 

above, what is the best way to identify groups of generators 
with the potential to exercise market power?  We examine 
three possibilities:  positive-sum row subsets, positive-sum 
column subsets, and positive-sum submatrices.  In all three 
cases, there is always at least one positive-sum subset – the 
subset of the whole row, column, or matrix. We are assuming 
that demand is fixed and inelastic.  Thus when all generators 
raise their bids proportionally, demand will not respond, and 
all generators will see increased revenues.  Demand bidding 
could be represented by additional generators with modified 
cost/bid curves. 

There are two tests for the potential of market power for a 
group of generators from the revenue – bid sensitivity matrix: 

1. Does raising the bids of all generators in the group 
benefit each generator in the group?  (Row sums) 

2. Does raising the bid of one generator in the group 
benefit all other generators in the group?  (Column 
sums) 

The first criterion is the more obvious indicator of 
collusion, while the subtler second criterion is necessary for 
the collusion to continue.  If a row has a positive sum, then 
raising the bid of the generators in the group benefits the 
generator corresponding to that row.  However, it does not 
necessarily benefit all generators in the group, and to continue 
cooperating in raising prices a system of side payments or 
explicit collusion may be necessary.  If a column has a 
positive sum, raising the bid of the generator corresponding to 
that column benefits all generators in the group.  For 
successful implicit collusion, all rows and columns of the 
group of generators must have positive sums. One easy way to 
verify this is to compute the sum of the entire submatrix. If it 
is positive, the group meets both tests for possible stable 
collusion2.  

We develop two Matlab programs to test randomly 
generated matrices for these conditions.  Both programs use a 
combinatorial function to find all one-bit departures from a 
given binary vector.  This vector indicates which rows and/or 
columns are members of the subset being checked for a 
positive sum.  The randomly generated matrices have negative 
diagonal elements, indicating that no generator can act alone 
to increase its revenue by increasing its bid.  The sum of all 
elements in the matrix is positive, since we are assuming 
inelastic demand, so that if all generators raise their bids, all 
will increase their revenues. 

Examining submatrix sums allows us to check for both 
implicit and explicit collusion.  Generators who can together 
raise bids and profit can learn this through repeated bidding, 
without communicating with each other, colluding implicitly.  
These same generators could of course discuss their strategies 
and explicitly collude, an illegal practice in most markets.  
The submatrix sums might also identify groups of generators 
using side payments to explicitly collude.  For example, a 
group observed repeatedly following a certain bidding pattern 
that appears unprofitable for some group members may 

                                                           
2 An interesting area of future research is stability analysis of the collusive 

point over multiple periods. 



 4

indicate that these members are being compensated outside of 
the standard market. 

A.  Row Sums 
Studying row sums alone is one way to identify potential 

load pockets.  However, many positive row sum sets do not 
meet both of the criteria for market power.  For example, the 5 
x 5 matrix shown in Table I has a positive- sum subset in row 
4 of elements 3 and 4: 

Yet, as Table II shows, the same group of generators does 
not have a positive sum in rows 1 or 5.  This indicates that the 
net change in revenue for these three generators increasing 
bids is only positive for generator three.  Generators one and 
five are better off leaving their bids at marginal cost than  
Table I:  Randomly generated 5 x 5 matrix3 

-18 -25 30 -55 -2
-29 -26 62 2 -2
30 51 -36 -36 -1
54 -1 36 -24 10
52 7 18 3 -61

Table II: Subset of 5 x 5 matrix 

     Row Sum 
-18 -25 30 -55 -2  
-29 -26 62 2 -2  
30 51 -36 -36 -1 -72 
54 -1 36 -24 10 12 
52 7 18 3 -61  

   Submatrix Sum -60 
 
raising them with generator three, and thus are not likely to 
collude with generator three to raise prices.  The only way that 
generators one and five would cooperate with generator three 
is if they are somehow reimbursed, such as with side 
payments or if one company owns all three generators. 
However, generator three’s gain is not enough to offset the 
losses of generators one and five. 

B.  Column Sums 
Column sums have the same problem as row sums – they 

identify only one of the two necessary conditions for potential 
to exercise market power.  Consider a simple two generator 
system, with revenue to bid sensitivities shown in Table III.  
When generator one increases its bid, it loses, and the group 
also loses, as seen in the negative sum for the first column.  
When generator two increases its bid, it loses, but the group 
gains, shown by the positive second column sum.  In this case, 
generator two benefits from generator one or both generators 
increasing bids, but generator one does not benefit in either 
case.  The submatrix sum, which is the sum of the row sums 
or the sum of the column sums, is negative, since the entire 
group does not benefit when both generators raise their bids.   

                                                           
3 The randomly generated matrices shown here used to demonstrate the 

general ideas of submatrix sums, but are not actual power system sensitivity 
matrices. 

Table III:  Revenue to bid sensitivities for a 2 generator system 

   Row Sums 
 -8 6 -2 
 2 -1 1 
Column 
Sums 

-6 5 Submatrix 
Sum = -1 

 
Table IV shows an example for a larger system, where the 

column sums program found a positive sum for column 4 
using columns 4 and 5.  However, column 5 has a negative 
sum, as seen in Table IV.  This indicates that raising the bids 
of generators 4 and 5 does not benefit both generators.  As 
with the row sums, a system of explicit collusion such as side 
payments or joint ownership would be necessary for this 
group to continue increasing prices together.  The submatrix 
sum, which indicates the overall benefit to the group, is 
negative, demonstrating that this is not a likely situation for 
market power. 
Table IV:  Randomly generated 5 x 5 matrix 

-16 2 -9 76 -16
22 -34 4 100 -3

-45 2 -20 99 -18
57 12 15 -24 -27
11 1 3 24 -21

Table V: Subset of 5 x 5 matrix 

 -16 2 -9 76 -16  
 22 -34 4 100 -3  
 -45 2 -20 99 -18  
 57 12 15 -24 -27  
 11 1 3 26 -21 Submatrix 

Sum 
Column 
Sums 

   2 -48 -46 

When the column sums for a group are positive, collusion 
can take place implicitly, without any exchange of money 
between the group members.  In the above example, if 
generator 4 increases its bid, all generators in the group 
benefit, but generator 4 loses.  Alternatively, if all four 
generators in the group raise their bids, generator 4 benefits 
(positive sum of row 4), but the other generators do not 
(negative row sums for rows 1, 3, and 5).  When all members 
of the group have positive column sums, they all benefit from 
the others raising their bids.   

C.  Submatrix Sums 
A positive-sum submatrix represents a group of generators 

for which the rows and columns associated with the group 
have a positive sum.  For a submatrix to have a positive sum, 
the off-diagonal elements must be positive and of greater 
magnitude than the diagonal elements.  Since submatrix sums 
combine row and column sums, they take into account both 
conditions for market power potential.  If submatrix sums can 
be efficiently computed, they are a potential metric for market 
power.  High submatrix sums indicate a strong incentive to 
exercise market power. 

D.  Improving Performance of Submatrix Search Program 
There are some methods that can speed up the submatrix 

search program.  First, we can limit the searching to groups 
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under some maximum size.  Second, we can prune the search 
space at each step. 

Costs of collusion increase with the number of colluders in 
a group, and for large groups, the incentives to collude tend to 
be less than the benefits of participating competitively in the 
market [10].  Legally coordinating actions among group 
members becomes impossible for groups with more than a few 
members.  One exception to this is a large group of generators 
jointly owned by one company.  We limited the maximum 
group size in the search to 2, 3, 4, and the entire group of 
generators.  Table VI shows the computation times for 100 
trials with randomly generated 20 x 20 matrices.  Limiting the 
group size to two generators halves the computation time of 
searching for groups of three or more.  The savings of limiting 
the group size to three are not significantly greater than 
searching with unlimited group size. 
Table VI:  Computation times for different group sizes, 20 x 20 matrices 

Maximum 
Group Size 

Mean 
Computation 

Time 

Minimum 
Computation 

Time 

Maximum 
Computation 

Time 
2 6.7593*10-7 5.3237*10-7 1.9908*10-6 
3 1.3528*10-6 1.0764*10-6 2.0784*10-6 
4 1.5068*10-6 1.0764*10-6 2.5347*10-6 
10 1.5768*10-6 1.0764*10-6 2.3495*10-6 
20 1.485*10-6 1.0764*10-6 2.3495*10-6 

We pruned the combinations of generators at each step so 
that the program looks only at the B*n largest sums from the 
previous step.  B is an integer, and n is the dimension of the 
matrix.  This limits the number of new 1-bit different 
combinations generated by the combinatorial function.  We 
began with B as 10, and tried different values of B for the 
same matrices.  For 8x8 and 20x20 matrices, the program 
finds the same positive-sum subset for values of B three and 
greater, with the lowest values having the shortest 
computation times.  For 100x100 matrices, B as low as two 
produces the same results as higher levels, but in less time.  
The computation time decreases quadratically with decreasing 
B.   

The running times of both programs increase with matrix 
size.  Both currently stop when the first positive-sum subset is 
found, so the submatrix program takes longer since it finds 
positive-sum subsets less often, and when it fails, must run 
through the entire matrix.  The program works for matrices up 
to 200 x 200, but takes a long time to run for larger matrices. 

IV.  EIGENVALUE METHODS TO LOCATE LOAD POCKETS 
The Lesieutre, Thomas and Mount paper describes a 

spectral analysis method that could be developed to identify 
load pockets [5].  In this method, the eigenvalues of the 
revenue-offer sensitivity matrix represent gains.  Any change 
in nodal prices in the system can be represented as a sum of 
scaled eigenvectors of the revenue-offer sensitivity matrix, 
and the corresponding change in dispatch will be the change 
in price scaled by the associated eigenvalues.  Small 
eigenvalues indicate presence of a load pocket, and large 
values in the corresponding eigenvector show the generators 
that are part of the load pocket. 

A method based on eigenvalues can be applied to detect 
many cases of market power, not just a group of generators 

raising bids together.  In some situations, market power is 
exercised by two generators raising their bids in different 
proportions; in this way, the high bid increases the LMP paid 
to both generators, but one generator may keep its bid slightly 
lower in order to have more of its power dispatched.  Another 
interesting case of market power is when one generator lowers 
its bid to induce congestion while a second generator submits 
a high bid.  For this case to be profitable to the two generators, 
the LMP paid to the generators would have to be strongly 
correlated to the bid of the second generator and very weakly 
correlated to the first generator’s bid. For the second generator 
to influence the LMP, its bid needs to be low enough that 
some of its power is dispatched.  If this is the case, the first 
generator will be fully dispatched, and will receive the LMP 
influenced by the second generator’s high bid.   

These observations about eigenvalues can be applied to 
search for positive-sum subsets in less time than the 
combinatorial method, as shown in Fig. 2.  Instead of going 
through all combinations of submatrices, we begin by 
computing the eigenvalues and eigenvectors of the revenue-
offer sensitivity matrix.  The search starts with the eigenvector 
corresponding to the smallest eigenvalues.  The first groups of 
generators to test are those with the largest value in this 
eigenvector, then one-bit departures from these combinations, 
the other generators corresponding to large values in the 
eigenvector, then the eigenvector with the next-smallest 
eigenvalue, and so on until a positive-sum submatrix is found. 

 
Fig. 2:  Algorithm to find load pockets using sensitivity matrix eigenvalues  

We compared the performance of the eigenvalue program 
with the earlier positive sum submatrix program, by running 
both programs 1000 times on the same 1000 randomly 
generated matrices and had the results shown in Table VII. 

Compute eigenvalues and 
eigenvectors 

Find position of largest two values in 
eigenvector corresponding to smallest 

eigenvalue.

Compute the submatrix sum 

Submatrix sum
positive? 

End

Run combi program to generate 
1-bit departures 

Find position of next largest value in 
eigenvector corresponding to smallest 

eigenvalue.

Repeat with the next-smallest 
eigenvalue and its eigenvector. 
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Table VII:  Comparison of Submatrix and eigenvalue Submatrix Programs 
Performance 

Program Original Positive 
Sum Submatrix 

Eigenvalue 
Based Positive 
Sum Submatrix 

Eigenvalue 
Speed / Original 

Speed 
Average time 5.9247e-7 2.6664e-7 2.22 

Maximum time 6.8749e-6 1.2616e-6 5.45 
Minimum time 1.851e-7 <1e-7 N/A 

A.  Heuristic method using eigenvalues and eigenvectors 
The previously presented method using eigenvalues and 

eigenvectors to speed up the combinatorial search does not 
present significant improvements; on average it only halves 
the running time of the search program, so that it is still 
unacceptably slow for large systems.  Instead of performing 
the combinatorial search for positive-sum submatrices, we 
now 
investigate using eigenvalues and eigenvectors as a heuristic 
to suggest groups of generators that may form load pockets. 

The spectral analysis method presented in the work by 
Lesieutre, Thomas and Mount [5] can be applied as follows to 
identify potential load pockets in a group of generators:   
1. Compute eigenvalues and eigenvectors of the revenue-

offer or dispatch-offer sensitivity matrix 
2. Sort the eigenvalues 
3. Look at the eigenvector corresponding to the second-

smallest eigenvalue 
4. Check the submatrix sum of generators corresponding to 

the elements of the eigenvector greater than the mean, or 
the mean plus the standard deviation. 

We have implemented this method, and it works for 
matrices obtained from power systems with known load 
pockets.  Since this method relies on the matrix properties, it 
is difficult to test on randomly generated matrices.  Changing 
the parameter in the fourth step above allows detection of 
different types of load pockets.  A very high value would 
locate only very ideal load pockets.  In the 30 bus, 6 generator 
system, using values between the mean and mean + ½ 
standard deviation identify that generators 5 and 6 are in a 
load pocket.  The program continues to identify the load 
pocket in the dispatch-bid sensitivity matrix for higher values, 
but fails with the revenue-bid sensitivity matrix.   In 
computing the revenue matrix from the dispatch matrix, the 
eigenvalues and eigenvectors change.  We will investigate this 
further in the following section. 

B.  Some remarks about Fiedler vectors 
A Fiedler vector in a positive semidefinite and singular 

matrix A(G), with smallest eigenvalue zero, is the eigenvector 
associated with the second smallest eigenvalue, also called 
a(G), or the algebraic connectivity of G [11].  Fiedler vectors 
have been applied to partition matrices by Pothen, Simon and 
Liou [12], and to partition power system networks by 
DeMarco and Wassner [13].  From the Lesieutre paper [5], we 
see that the dispatch – offer sensitivity matrix for a case with 
an ideal load pocket has two zero eigenvalues.  The 
eigenvector corresponding to one zero eigenvalue is a vector 
of ones.  The matrix M of dispatch-to-offer sensitivity is 
singular with a zero eigenvalue.  However, it is not positive 
definite since it has zero and negative eigenvalues.  

Generating the dispatch-to-offer sensitivity matrix for several 
different power systems, we find that its eigenvalues are 
always zero and less, so that the eigenvalues of -1*M are 
always zero and greater.  Thus, -1 times the matrix is positive 
semidefinite, and we may be able to apply some of the results 
relating to Fiedler vectors to this matrix.   

Fiedler vectors are applicable to identifying load pockets:  
the eigenvector associated with the second zero eigenvalue 
(the Fiedler vector) can be divided into negative and positive 
elements.  As seen in [5], if the load pocket is ideal, the 
negative elements will be identical, and a vector of generators 
in the load pocket can be determined.  Running the two OPFs 
on a six generator, thirty bus system with a known load 
pocket, we found that there are two eigenvalues close to zero, 
and applying the above-described mathematics identifies a 
load pocket associated with the larger of the two.   

We can implement this, adding a few steps to the heuristic 
method described earlier. 

1. Compute eigenvalues and eigenvectors of M (the 
dispatch-bid sensitivity matrix) 

2. Are there two nearly-zero eigenvalues? 
3. Is one of the eigenvectors a vector of ones? 
4. Look at the eigenvector associated with the other 

nearly-zero eigenvalue 
5. Separate it into negative and positive elements 
6. Use equation (24) from the Lesieutre paper, to get a 

vector whose nonzero elements are generators in a 
load pocket. 

The first heuristic eigenvalue method relies on values in the 
eigenvector being above or below some parameter (the mean 
of the eigenvector, for example).  We notice that this 
parameter can be higher for the dispatch matrix than in the 
revenue matrix with the program still locating the load pocket.  
This is because the eigenvalues and eigenvectors of the two 
matrices are not the same.  While the dispatch matrix has the 
clear distinction of negative and positive values in the 
eigenvector corresponding to the second smallest eigenvalue 
in a system with a load pocket, the revenue matrix does not.  
When a load pocket is present, the revenue eigenvector does 
have some values much higher than others, but some values 
that would be negative in the dispatch matrix become small 
and positive in the revenue matrix.  This method will work as 
long as the eigenvalues and eigenvectors of the matrix are 
computable.  The Matlab function eig works until matrices are 
larger than 1000 x 1000.  The function eigs may be faster 
since the user can specify how many of the smallest or largest 
eigenvalues and eigenvectors to calculate, but it does not work 
for matrices much larger than 1000 x 1000. 

C.  Using an augmented sparse matrix 
One drawback in computing the sensitivity matrices as done 

in [5] is that for larger systems, it does not preserve the 
sparsity of the matrices, making eigenvalue calculations more 
time-consuming.  The incremental model given in [5] is 
reduced to obtain the dispatch-to-offer sensitivity matrix.  
However, a similar result can be obtained by creating a large 
sparse matrix.  We are currently working on extending this 
idea. 
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The matrix is constructed from the following equations 
developed in [5]: 
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Where H is the Hessian matrix of second derivatives from 
the OPF, g1 is the binding active power constraints at 
generator buses, g2 is the rest of the binding constraints, z is 
the dispatch, y is load constants, reactive powers, voltage 
magnitudes and angles, and λ1 and λ2 are the Lagrange 
multipliers for the constraints.  The structure of the large 
sparse matrix is as follows in Table VIII. 

For example, in the 30-bus, 6 generator system studied in 
[5],  this matrix is 124 x 124, and is only 7.7% filled, in 
contrast to the 6 x 6 reduced matrix which is 100% filled.  Fig. 
3, Fig. 4 and Fig. 5 show the sparsity structure for a 118 bus, 
54 generator system.  In these figures, dots correspond to 
nonzero entries in the matrix.  Fig. 3 shows the 54 x 54 
reduced matrix, which is 74.1% filled; Fig. 4 illustrates the 
499 x 499 augmented matrix, which is only 1.97% filled, and 
Fig. 5 shows a re-ordered version of the augmented matrix.   
Table VIII: Augmented matrix structure 
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Table IX displays statistics measuring the sparsity of the 

reduced and augmented matrices.  These statistics relate to the 
computational complexity of different computations with a 
given matrix [14].  τ is the total number of nonzero elements 
in the matrix, α is a measure of the computational effort to 
factor the matrix, and β is a measure of the computational 
effort to invert the matrix. 
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Table IX: Sparsity indices for the 118 bus system reduced and augmented 
dispatch-offer sensitivity matrix 

Matrix size % filled τ α β 
Reduced 54 x 54 71.6 % 2088 90146 61496 
Augmented 499 x 499 1.97 % 4905 67193 1513607 
Augmented 
Re-ordered 

499 x 499 1.97 % 4905 45477 1100274 

 
The augmented dispatch to offer sensitivity matrix has 

many of the same properties as the reduced matrix.  It is 
symmetric, has all real eigenvalues and has at least one zero 

eigenvalue.  However, its diagonal entries are all positive or 
zero and its eigenvalues are positive, negative, and zero.  It 
may be possible to develop faster-running eigenvalue methods 
on the augmented matrix, and then apply a transformation to 
determine how the eigenvalues of the augmented and reduced 
matrices relate.  

 
Fig. 3:  Sparsity structure of reduced matrix for 118 bus, 54 generator system, 
71.6% filled, τ = 2088, α = 90146, β = 61496 

 
Fig. 4:  Sparsity structure of augmented matrix for 118 bus system, 1.97% 
filled, τ = 4905, α = 67193, β = 1513607 

 
Fig. 5:  Sparsity structure of re-ordered augmented matrix for 118 bus system, 
1.97% filled, τ = 4905, α = 45477, β = 1100274 
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V.  CONCLUSIONS 
A matrix of dispatch or revenue to bid sensitivities can be a 

useful tool in locating load pockets and identifying groups that 
might benefit from market power.  Some methods for 
identifying load pockets are: row sums, column sums, 
submatrix sums, and eigenvalues and eigenvectors.  The 
easiest of these is to compute row sums, but many of these are 
false alarms – collusion benefits only one or a small part of 
the group, and decreases the revenue of the rest of the group. 
The positive-sum submatrix method is a more accurate metric 
for predicting market power potential.  However, locating 
positive-sum submatrices in a large system is a computational 
challenge.  Heuristic methods based on eigenvalues and 
eigenvectors will be more practical for larger systems.  
Furthermore, for very large systems, it may be more efficient 
to compute a large sparse matrix for the sensitivity instead of 
reducing the linearized equations into a small matrix, so that 
the needed eigenvalues and eigenvectors can be computed in a 
reasonable amount of time. 

Future work in this area includes further investigation of the 
relationship between positive-sum subsets and eigenvectors 
and eigenvalues, time-domain analysis of the stability of 
collusive groups, and a similar analysis of the sensitivity of 
profit to bid. We are also investigating using a large sparse 
matrix based on the incremental model equations, looking at 
examples of exercise of market power by lowering bid, and 
analyzing how an ISO or FERC could incorporate the more 
detailed information available to them into similar methods.  
Historical bidding information and holding company 
arrangements could also be incorporated into this research. 
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